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SECTION I

(C) INTRODUCTION (U)

A. (C) CHURCH ANCHOR AMBIENT NOISE EXPERIMENT (U)

(C) This report presents the omnidirectional ambient noise intensity measurements obtained in
the CHURCH ANCHOR exercise area, the eastern quarter of the Pacific north of 200N. The data
were collected in September 1973 during the CHURCH ANCHOR exercise sponsored by the
Long Range Acoustic Propagation Project (LRAPP). The data are also discussed in the CHURCH
ANCHOR Synopsis Report 1 and the CHURCH ANCHOR Environmental Acoustic Summary
Report.2

(U) The purpose of this technical report is to present CHURCH ANCHOR ambient noise data
reduced by the data processing laboratories of The University of Texas at Austin (UT), Marine
Physical Laboratory (MPL), the Defence Research Establishment Pacific (DREP), and Texas
Instruments and to discuss a preliminary analysis of that data. In Section II, the omnidirectional
ambient noise data from the four laboratories are discussed as a function of time, depth,
frequency, and location. Appendixes A through D are inputs from each of the four individual
processing laboratories. These appendixes contain descriptions of each facility's hardware and
software systems, in addition to a compilation of each facility's reduced data.

(C) Omnidirectional noise intensity measurements were made with Acoustic Data Capsule
(ACODAC) systems, the MPL array, and the MESA array of DREP. The site locations of the
measurement platforms are shown in Figure 1-1.

(C) ACODAC systems were moored at sites A, C, and D and were aligned on the exercise
baseline (143030'W). Each ACODAC system consisted of six vertically distributed hydrophones.
At sites A and C, hydrophones were positioned near axis (670 m at site A and 655 m at site C),
critical depths (4,515 m at site A and 3,860 m at site C), and, at site C, near the sea floor
(5,555 m). At site D, all hydrophones were distributed between the bottom of the sound channel
and the sea floor (4,646 m). In Table 1-1, the location of each ACODAC and the hydrophone
depths at each site are compiled.

(C) The MPL acoustic receiving system consisted of a 20-element vertical array suspended from
the Floating Instrument Platform (R/P FLIP) at site B. The location of site B is given in
Table 1-1.

(C) DREP collected acoustic measurements with the six-element horizontal MESA array from
the CFAV Endeavour. Omnidirectional ambient noise intensity measurements were made at two
moored stations, site E (46 0 N) and site F (57°N), located on the exercise baseline.

B. (C) SUMMARY OF RESULTS (U)

(U) The significant results of the ambient noise study, based on measurements taken by the
ACODACs, MPL array and the MESA array, are as follows.
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TABLE 1-1. (C) SUMMARY OF CHURCH ANCHOR AMBIENT NOISE DATA (U)

ACODAC: Site A Location: 30W31.9'N Axis Depth = 670 m
143°30.0'W Critical Depth = 4,515 m

Sea Floor Depth = 5,091 m

HYD SER. NO. DEPTH DATA

1 11 749 Yes
2 7 1,330 No
3 2 2,612 No
4 13 4,046 Yes
5 14 4,353 Yes
6 3 4,659 Yes

Recording Time: "ON" 130600Z Sep 73
"OFF" 2401400Z Sep 73

FLIP: Site B Location: 32011.8'N Hydrophone Depths =

143°35.4'W 200, 790, 2,492, 4,222,
4,474, 5,180 m

Recording Times: 162000Z-171000Z Sep 73
201500Z-210325Z Sep 73

ACODAC: Site C Location: 39013.3'N Axis Depth = 655 m
143028.1'W Critical Depth = 3,860 m

Sea Floor Depth = 5,555 m

HYD SER. NO. DEPTH DATA

1 101 696 Yes
2 102 2,497 No
3 103 3,748 No
4 104 4,055 Yes
5 105 4,361 Yes
6 106 5,521 Yes

Recording Time: "ON" 160022Z Sep 73
"OFF' 270313Z Sep 73

ACODAC: Site D Location: 45005.1'N Axis Depth = 478 m
143'30.5'W Critical Depth = 2,840 m

Sea Floor Depth = 4,646 m

HYD SER. NO. DEPTH DATA

1 5 3,325 Yes2 12 3,625 Yes
3 1 3,925 Yes
4 9 4,225 Yes
5 4 4,520 Yes

6 6 4,612 Yes

Recording Time: "ON" 180732Z Sep 73
"OFF" 281730Z Sep 73

Endeavour: Site E 460 N
143'30'W ' 6-element planar array

Endeavour: Site F 57 0 N at depth of 460 m

1430 30'W "

Recording Time: 222253Z-240302Z Sep 73

CONFIDENTIAL
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Figure 1-1. (C) Exercise Area Showing Primary Acoustic Measurement Sites (U)

1. (C) Depth Effects (U)

(C) Ambient noise intensity levels below the sound channel exhibit strong correlation to local
noise sources.

(C) In the mean, the measured intensities at all sites indicate a trend of decreasing noise
intensity with increasing depth in the water column.

(C) At sites B and C, the change in ambient noise intensity with depth was greater between
the critical depth and bottom than between the axis and the critical depth for nearly all
frequencies.
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2. (C) Frequency Effects (U)

(C) The 1/3-octave ambient noise intensity levels were relatively constant over the 10- to
70-Hz band.

(C) In the 70- to 250-Hz band, the noise intensity decreased with increasing frequency at
approximately 10 dB per octave.

(C) In the 200- to 800-Hz band, the noise intensity decreased at approximately 5 dB per
octave.

3. (C) Environmental Effects (U)

(C) Twenty-hertz pulses attributed to a biological source occasionally raised the noise level in
the 25-Hz band by as much as 5 dB at all depths.

(C) At sites C and D, good correlation between intensity level and wind force was observed,
particularly in the 160- and 250-Hz bands.

(C) Energy from nearby surface ships increased the intensity level in all bands by as much as

30 dB below the sound channel and 20 dB in the sound channel.

4. (C) Geographic Effects (U)

(C) Near the sound channel axis, the noise intensity level in the 50- to 160-Hz bands at
sites B, C, and E was generally 2 to 4 dB greater than at site A.

(C) Intensity levels in the 12.5- to 250-Hz band at site A were 8 to 9 dB lower than at sites C

and D, at depths below critical depth.

5. (C) System Effects (U)

(C) Cable strumming energy occasionally raised the noise intensity level in the 12.5-Hz band,
for some depths at sites A and C, by as much as 20 dB.

(C) Self-noise, generated by FLIP, necessitated some adjustments or deletion of selected
1/3-octave measurements obtained at site B.
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SECTION II

(C) ANALYSIS OF RESULTS (U)

A. (C) DESCRIPTION OF DISCRETE NOISE SOURCES (U)

(C) The acoustic data observed at sites A, B, C, D, E, and F were composed of signals from
many sources, several of which are identifiable. Lofargrams and 10-day ambient-noise-intensity
time-series plots of the data from sites A, C, and D were made for selected hydrophones. The
lofargrams and 10-day plots were used in the identification of discrete noise sources. The 10-day
plots are presented in Subsection II.B and a selected set of lofargrams are shown in Appendixes E
and F. For this discussion, the discrete noise sources are separated into three categories as
follows:

Biological

ACODAC cable strumming

Nearby surface ships.

Other types of signals were observed in the data but were not categorized because they were of
short duration, infrequent, or did not appreciably affect the ambient noise levels. After
estimating the contribution of each known discrete source to the composite ambient level,
uncontaminated ambient levels can be determined.

1. (U) Biological

(U) A distinctive noise source was observed in the data from sites A and C. These signals were
of a repetitive nature and occurred in the vicinity of 20 Hz.

(U) The 20-Hz pulses are believed to be of biological origin, 1' 2' 3'4 probably the finback
whale, species Balaenoptera Physalus, that may have been in the vicinity during the CHURCH
ANCHOR tests. The 20-Hz pulses are discussed in Appendix E.

2. (U) ACODAC Cable Strumming

(U) ACODAC systems at sites A and C were deployed in taut-line (high cable tension) vertical
moorings. The ACODAC system at site D was deployed in a compliant (low cable tension)
vertical mooring. Low-frequency signals caused by strumming of the taut cables are present in
the data from sites A and C. The compliant array at site D gives no evidence of the strumming.
Figure 2-1 shows the extent of strumming as a function of time for each of the hydrophones at
sites A and C.

(U) Analysis of the data from site A indicates that the strumming was strongest and more
frequent at the deep phones and weakest and more infrequent at the shallow phones. However,
this trend is reversed on site C where the strumming is more severe at the shallow depth phone
and is only occasionally observed at the deeper phones.
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Figure 2-1. (U) Occurrence of Cable Strumming

3. (U) Shipping

(U) The level of ship-generated ambient noise that exists at any point in the ocean depends on
the ship population and distribution about that point and the number and quality of acoustic
paths to each ship. In general, the overall level of shipping noise is due to a large aggregate of
ships. But, if an individual ship passes within a few miles (25 miles or less), the broadband
radiated noise may dominate the broadband ambient noise level. In addition, multipath
interference patterns may occur in the spectrum. The largest amount of surface traffic was
observed at site C, much of it being caused by ships involved in the CHURCH ANCHOR
exercise. The deeper phones were consistently affected by nearby shipping to a greater degree
and for longer periods of time than were the shallow phones. A summary of typical ship
signatures identified from the lofargrams is presented in Appendix F.
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B. (C) 10-DAY ACODAC INTENSITY TIME SERIES PLOTS (U)

(C) One of the main features of ambient noise is that it can be divided into three distinct
frequency domains. Ambient noise in the region from 10 Hz to a few hundred hertz is
dominated by energy radiated from surface ships, while above a few hundred hertz it is most
heavily influenced by wind or weather-related phenomena.',6,7, 8 Below about 10 Hz, shipping
noise diminishes and seismic activity becomes the dominant source of energy. Other sources,
such as biological sources, can sometimes dominate in either or both regions. As previously
mentioned, strong biological activity in the 20-Hz region is observed in much of the data from
sites A and C.

(U) To obtain the 10-day plots, data from selected hydrophones were analyzed in six
1/3-octave bands centered at 12.5, 25, 50, 100, 160, and 250 Hz. Ten-minute power averages
were computed and plotted over a 10-day period. The spectral levels were plotted in units of
dB/yPa/Hz'2. The calibration signals, which occurred for a duration of 5 minutes every 6 hours,
are intermixed with the data. The 50- and 200-Hz calibration signals appear as spikes in the 50-,
160-, and 250-Hz bands. In the generation of the 10-day plots, the only calibration signals
processed were the header calibration signals. Therefore, the levels of the 6-hour calibration
signals shown in the 10-day plots are not accurate and should be ignored.

1. (C) Site A (U)

(C) Figures 2-2, 2-3, and 2-4 show 10-day intensity time-series plots for the 749 m, 4,353 m,
and 4,659 m hydrophones at site A for the period 130600Z to 240800Z (September 1973). The
average sound channel axis depth occurs at 670 m and the critical depth at 4,515 m. Most of the
large-level increases noted on the plots were caused by ships passing nearby. One exception is
that of cable strumming, which at times raised the level in the 12.5-Hz band for some phones by
as much as 20 dB. The prominent periods of cable strumming are identified on the plots.

(C) An observation of the 10-day plot indicates that at least six ships passed close enough to
site A to raise the noise level in one or more 1/3-octave bands for the three phones analyzed.
From the track charts, at least two of these are believed to be CHURCH ANCHOR exercise
ships. Less variation in average levels was observed at the 749 m depth, and the noise level
(below about 160 Hz) received from distant traffic was higher.

(C) No wind force data were available for site A to correlate with the data. However,
observation of the 10-day plots at this site shows no prominent change in ambient noise levels
that might be attributed to local weather conditions.

2. (C) Site C (U)

(C) Figures 2-5, 2-6, and 2-7 show 10-day time-series plots for the 696 m, 4,055 m, and
5,521 m depths at site C for the period 160000Z to 262200Z (September 1973). For this site,
the average sound channel axis depth occurred at approximately 655 m and the critical depth at
3,860 m.

(C) The ambient noise intensity level at site C was dominated a large percent of the time by
nearby ships. This was expecially true at depths below the sound channel which contained less
long-range components and exhibited a stronger correlation to level changes in local noise
sources. The noise at these depths seldom reached a mean level characteristic of distant traffic.
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(C) Some 12 ships, of -which at least three were CHURCH ANCHOR exercise vessels, passed
close enough to site C to significantly increase the noise levels in one or more 1/3-octave bands.
Strong ship signature lines were observed in the lofargrams most of the time, even when no
appreciable changes in the spectrum levels were noted in the 10-day plots.

(C) Twenty-hertz pulses that are attributed to a biological source noticeably raised (5 dB) the
level in the 25-Hz band at times. Occurrences of 20 Hz pulses are identified on the plots.

(C) Wind force data obtained from Fleet Weather Central, Pearl Harbor, is shown plotted at
the bottom of Figure 2-7. Observation of the weather data indicates good correlation between
ambient level and wind force, especially in the 160- and 250-Hz bands. The periods of low
ambient levels which occurred at approximately 171200Z, 201200Z, and 221200Z at all three
depths also correspond to periods of low wind force. These level changes, moreover, were more
pronounced for the deepest phone at 5,521 m than for the other phones at 4,055 m and 696 m.
The data from the 5,521 m phone at site C were suspect in absolute level terms since a
postcalibration at the Underwater Sound Reference Division, Naval Research Laboratory
(Orlando, Florida), indicated a 6-dB drift in sensitivity caused by temperature changes from 230
to 30C. But, since the data from the 4,612 m phone at site D exhibited the same characteristics,
the validity of the data from the 5,521 m phone at site C is supported. The peak-to-peak swings
in the noise levels for the 160- and 250-Hz bands correspond to approximately 15 to 20 dB for
the 5,521 m phone, as opposed to 5 to 7 dB for the 4,055 m and 696 m phones. The average
noise level was observed to decrease with depth by 10 to 15 dB between the 696 m phone and
the 5,521 m phone at low frequencies (50 Hz and below). The 5,521 m phone (34 m above sea
floor) was well below critical depth and consequently did not receive the long-distance
ship-generated energy from refracted paths. It should, therefore, be quieter than those phones
above critical depth except when local traffic raised the level, which did not occur an appreciable
percent of the time at this site.

3. (C) Site D (U)

(C) Figures 2-8, 2-9, and 2-10 show the 10-day time-series plots for the 3,625 m, 3,925 m, and
4,612 m phones at site D for the period 181000Z to 271000Z (September 1973). For this site,
all hydrophones were distributed between the bottom of the sound channel and the sea floor.
The average sound axis depth occurred at 478 m and the critical depth at 2,840 m. Two and
possibly three ships that passed close enough to this site to raise the noise level in one or more
bands have been identified as CHURCH ANCHOR exercise ships.

(C) Wind force data recorded on the Endeavour, which was in the area of site D from
18 September through 28 September, are shown plotted at the bottom of Figure 2-10. As can be
seen, site D exhibits a correlation between noise level and wind force in the 160- and 250-Hz
bands for all three hydrophones. The periods of low noise levels and wind force occurred at
approximately 210000Z, 221000Z, and 241000Z. These phones, being below the sound channel,
normally exhibited a strong correlation between level changes and local noise sources. The noise
level below 100 Hz showed very little wind dependence and can be explained by Wenz curves, 9

which indicate that ocean traffic noise peaks in the frequency band from 40 to 100 Hz. Above
this frequency, ambient noise level is strongly dependent on wind force. The variations in level
(15 to 20 dB) for the 4,612 m phone compare in magnitude to the variations in level for the
5,521 m phone at site C, both of which are 34 m above the sea floor.
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C. (C) ANALYSIS OF UNCONTAMINATED AMBIENT NOISE DATA (U)

1. (C) Definition of Uncontaminated Noise Intensity (U)

(C) Uncontaminated noise levels were determined by visually estimating what the level would
be in the absence of local surface traffic. This was accomplished by positioning a see-through
ruler so that half the noise intensity levels were above and half below the straight edge. Finally,
the ambient noise data base was enlarged by combining the processing results from Texas
Instruments, The University of Texas, the Marine Physical Laboratory, and the Defence Research
Establishment Pacific.

2. (C) Depth Profiles (U)

(C) The ship-generated energy that follows refracted paths for long distances would be
expected to be strongest in those depth regions occupied by refracted paths.6 In general, very
shallow or very deep hydrophones will not intercept these paths.

(U) To illustrate the variation of the ambient noise intensity with depth, depth profiles for
two 24-hour and one 10-day observation periods were constructed for sites A and C and two
24-hour periods for site B. In addition, a depth profile for one 10-day average was made for
site D. Thus, a total of nine depth profiles, Figures 2-11 through 2-19, were made available for
analysis. The data presented in this manner indicate that the spread in the noise levels across the
frequency band was greater at the shallower depths (near the sound channel axis) than it was
near the critical level and below. These spreads are summarized in Table 2-1. This phenomenon
was caused by the noise in the lower frequency bands decreasing at greater rate with respect to
depth than the higher frequencies. Thus, the noise in the 250-Hz band decreased very slightly,
whereas the level in the lower frequency bands consistently decreased several decibels when the
transition to greater depths occurred. The energy in the lower frequency bands originated at long
ranges and propagated mainly in the sound channel axis. This propagation mode would explain
the rapid decrease in low-frequency energy for depths below critical depth. The higher
frequencies, however, were generated more locally than the lower frequencies and, consequently,
were not dependent on the sound channel for their relatively short propagation paths. Thus, the
effect of the transition from the sound channel axis to critical depth and deeper for high
frequencies was not as severe as for the lower frequencies.

3. (C) Depth Dependence of the Nonstationarity of the
Ambient Noise Field (U)

(C) One of the most significant features of the ambient noise data is the nonstationarity as
reflected in the rapid change in noise intensity that can occur over a period of only a few hours.
This behavior is easily observed in Figures 2-2 through 2-10, which were constructed with
10-minute averages. Generally, as the depth increased, the relative nonstationarity likewise
increased, an effect that occurred at all frequencies. This phenomenon can be attributed to the
fact that the stationary component of the total ambient noise field was generated by a large
number of sources at long distances. Thus, the stationary component of the noise relied on the
sound channel for propagation and, as a result, a decrease in depth below the critical depth can
cause a significant decrease in the intensity of the stationary component of the noise. Local
sources of noise, on the other hand, were relatively few in number and their appearance and
disappearance with time generated the rapid fluctuations observed in the total noise intensity plots.
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Owing to the closeness of these sources to the hydrophone, the sound channel was not a critical
factor in the propagation of their noise fields. Therefore, the nonstationary components become
a larger percentage of the total ambient noise field at greater depths; the net effect is that
nonstationarity increases with depth.

4. (C) Noise Intensity Spectra (U)

(U) An alternative presentation of the variation of the noise intensity with frequency and
depth is possible with the construction of noise-intensity spectra. Noise-intensity spectra were
generated by plotting 10-day and 24-hour averages of the noise intensity, measured at a given
depth and site, as functions of frequency. Figures 2-20 through 2-28 are noise-intensity spectra
corresponding to site A (one 10-day and two 24-hour averages), site B (two 24-hour averages),
site C (one 10-day and two 24-hour averages), and site D (one 24-hour average).

(C) As with the depth profiles, these noise intensity spectra indicate a general decrease in noise
intensity (for a given frequency) with depth. In addition, the rate of decrease with depth is
frequency-dependent. Thus, the transition in depth from the sound channel axis to near the
critical depth has a more marked effect on the lower frequencies than on the higher frequencies.

TABLE 2-1. (C) SPREAD IN AMBIENT NOISE INTENSITY AT VARIOUS DEPTHS
ACROSS FREQUENCY BAND 12.5 TO 250 HZ, FOR SITES A, C, AND D,

AND 25 to 250 HZ, FOR SITE B (SEPTEMBER 1973) (U)

24-Hour Average 24-Hour Average

Site Depth 171600Z-181600Z 191400Z-201400Z 10-Day Average

A 749 m 25 dB 25 dB 28 dB
Axis Depth-670 m 4,046 m 18 dB 19 dB
Critical Depth-4,515 m 4,353 m 19 dB 19 dB 20 dB
Sea Floor-5,091 m 4,659 m 17 dB 18 dB 19 dB

200 m 19 dB 18 dB
B 750 m 21 dB 19 dB

Axis Depth-637 m 2,552 m 20 dB 17 dB
4,351 m 17 dB 15 dB

Critical Depth-4,420 m 4,463 m 16 dB 15 dB
4,575 m 13 dB 14 dB

Sea Floor-5,447 m 5,241 m 12 dB 14 dB
5,297 m 16 dB 14 dB

C
Axis Depth-655 m 696 m 20 dB 19 dB 19 dB
Critical Depth-3,860 m 4,055 m 12 dB 12 dB 15 dB
Sea Floor-5,555 m 5,521 m 11 dB 5 dB 6 dB

D 3,325 m 10 dB
Axis Depth-478 m 3,625 mn 10 dB 15 dB
Critical Depth-2,840 m 3,925 m 9 dB 13 dB
Sea Floor-4,646 mn 4,225 m 8 dB

4,520 m 4 dB
4,612 m 5 dB 11 dB
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This appears to be the case for both 24-hour and 10-day averages. This same phenomenon is also
observed when the depth is increased to below the critical depth. These statements are quantified
in Table 2-2, which gives the decrease in ambient noise intensity with depth at a given frequency
as estimated over specified depths at a given site. For example, one can see from Table 2-2 that,
at site A on day 171600Z to 181600Z, the 12.5-Hz noise level decreased by 11 dB when the
depth increased from 749 to 4,659 m. The corresponding decrease in the noise intensity at
160 Hz was only 7 dB. Similar observations can be made at other sites and days.

(C) Consistently, the ambient noise level reached a maximum in the frequency range from 25
to 50 Hz at all sites and depths. Between 50 Hz and 100 Hz, there was a general decrease of
about 5 dB per octave. Beyond 100 Hz, however, the ambient level decreased at approximately
10 to 15 dB per octave.

5. (C) Intersite Comparison (U)

(C) Figure 2-29 shows 10-day uncontaminated ambient noise intensity averages for the first
hydrophone below critical depth at each of the measurement sites. (No hydrophone was located
near critical depth for site E.) Figure 2-30 shows the same data for the hydrophone located

TABLE 2-2. (C) DECREASE IN AMBIENT NOISE INTENSITY
AT A GIVEN FREQUENCY FOR SITES A, B, C, AND D (U)

24-Hour Average 24-Hour Average
Site Frequency 171600Z-181600Z 191400Z-201400Z 10-Day Average

12.5 Hz 11 dB 12 dB 9 dB
A 25.0 Hz 12 dB 13 dB 11 dB

Axis Depth-670 m 50.0 Hz 10 dB 8 dB 9 dB
Critical Depth-4,515 m 100.0 Hz 8 dB 8 dB 8 dB
Sea Floor-5,091 m 160.0 Hz 7 dB 7 dB 7 dB

25.0 Hz 15 dB 12 dB
B 50.0 Hz 14 dB 10 dB

Axis Depth-637 m 100.0 Hz 14 dB 11 dB
Critical Depth-4,420 in 160.0 Hz 10 dB 9 dB
Sea Floor-5,447 in 250.0 Hz 6 dB 5 dB

12.5 Hz 15 dB 14 dB 13 dB
C 25.0 Hz 10 dB 17 dB 14 dB

Axis Depth-655 m 50.0 Hz 13 dB 14 dB 14 dB

Critical Depth-3,860 in 100.0 Hz 10 dB 8 dB 9 dB
Sea Floor-5,555 m 160.0 Hz 7 dB 4 dB 4 dB

D 25.0 Hz 9 dB
Axis Depth-478 in 50.0 Hz 12 dB
Critical Depth-2,840 m 100.0 Hz 8 dB
Sea Floor-4,646 in

NOTES: Depths 749 in to 4,659 mn for Site A
Depths 750 in to 5,241 in for Site B
Depths 696 m to 5,521 m for Site C

Depths 3,925 m to 4,612 in for Site D
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nearest the sound axis for each site. (No hydrophone was located near the axis for site D.) The
data in these figures show that site A has considerably lower ambient level than do the other
sites. Although data are plotted for only two depths, visual inspection of Figures 2-11 through
2-19 shows that the lower level holds at other depths. There are no known sound-velocity-profile
nor bathymetric characteristics at site A that would account for this difference; one possible
reason for the difference at the higher frequencies is wind speed.

(C) Although no wind data are available for site A, wind data were collected for sites C, D,
and E. Figures 2-6 through 2-9 show how well the ambient level at 160 and 250 Hz on the
deeper hydrophones correlates with the rising and falling of the wind speed. Furthermore,
Appendix C shows correlation of the higher ambient noise levels at 160 and 250 Hz with wind
speed at site E. Since the ambient levels of site A shown in Figures 2-3 and 2-4 do not show the
gradual changes seen at sites C and D (Figures 2-6 through 2-9), one possible reason for the lower
ambient level in the higher frequency region is lower wind speed.

6. (C) Observations of the DREP Data (U)

(C) The data received from Defence Research Establishment Pacific (DREP) of Canada allow
additional interpretation of the noise intensity in that the frequency range of the intensity
estimates extends to 800 Hz (see Appendix C). The general shapes of the noise spectra in the
band 20 to 250 Hz were similar to those spectra reported from other sources (UT, Texas
Instruments, and MPL). Thus, the spectra reached their maxima in the regions 25 to 50 Hz and
monotonically decreased with decreasing and increasing frequencies, respectively, outside this
band. In the frequency region between 70 and 200 Hz, the decrease was most rapid: about
10 dB per octave. Beyond 200 Hz, the rate of decrease with frequency was only about 5 dB per
octave.
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APPENDIX A

(C) AMBIENT NOISE INTENSITY MEASUREMENTS (U)

I. (U) PROCESSING SYSTEM AND METHOD

(U) The block diagram in Figure A-1 presents the hybrid facility at Texas Instruments that was
used for the reduction of ACODAC ambient noise data into 1/3-octave bands. At 80-to-l
playback speed, the analog tape recorder was speed-compensated to correct for wow and flutter
by locking onto a higher harmonic of the time code carrier. To prevent aliasing and to remove
low strumming frequencies, the data were filtered through the passband of 10 to 300 Hz. The
gains of the variable amplifiers located in front of and behind the 1/3-octave filter were set to
allow the processing system to accommodate the full dynamic range of the data. The center
frequencies of the fourteen 1/3-octave filters ranged from 12.5 to 250 Hz. The output of each
filter was squared and then integrated for a 10-second period which was synchronized to the
time code signal. After A-to-D conversion, 10-second samples of the integrators were transmitted
to the EAI 640 digital computer and stored on digital magnetic tape. The time code and data
amplifier gain state were decoded and transmitted to the digital computer and also stored on
digital magnetic tape.

(U) From the 10-second samples, first- and second-order statistics (p and a) were computed for
each 10-minute period. After 24 hours of ambient data had been processed, the quantities, 10 log
(jp), 10 log (,u + a) and 10 log (p - a), were plotted as a function of time for each of the six
frequencies: 12.5, 25., 50, 100, 160, and 250 Hz. A flow diagram describing the computation of
the first-order statistic is shown in Figure A-2. In addition to the 24-hour plots, Texas
Instruments plotted 10 log p as a function of time for the above six 1/3-octave bands for a
10-day period. These 10-day plots were presented in Subsection II.B. Figure A-3 shows the
information plotted on a strip chart recorder during the real-time computation of the ambient
statistics.

(U) Figure A-4 contains a flow diagram describing the various steps required to process the
front-end calibration signals. The input voltage for each front-end calibration signal was known
to within ±0.1 dB. From knowledge of the amplitude of the input and processed calibration
signals, a frequency response at each gain state and at each calibration frequency for the
composite system, namely, the data amplifier, record and reproduce amplifier, bandpass filter,
and 1/3-octave filter, was computed. A corrective scale factor was then applied to the levels of
the processed ambient data. Included in the scale factor was a compensation for changes in the
data and record* amplifier response caused by differences in environmental temperature (250 to
00 c).

II. (U) ERROR ANALYSIS

(U) Several studies have been made involving an error analysis on ACODAC data. Two reports
are referenced; namely, a report by B.K. Dynamics,1 and a report by Texas Instruments.2 The
two reports are in close agreement concerning an estimate of the total error for the composite
system which includes the ACODACs, the processing hardware, and processing software. The
total error spread on the ambient data is estimated as ±1.8 dB. Individual error estimates for the
1/3-octave filters, the squarers, and integrators are shown in Figure A-5.

i
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Figure A-2. (U) Flow Diagram for Computation of First Order Statistic
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Figure A-3. (U) Strip Chart Recorder Output
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Figure A-4. (U) Flow Diagram for Processing Front End Calibration Signals
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TABLE A-1. (U) SUMMARY OF AMBIENT NOISE INTENSITY TIME-SERIES
PLOTS SHOWN IN FIGURES A-6 THROUGH A-26

Figure Site Time Period Hydrophone

A-6 A 171600Z to 181600Z 749 m, 4,353 m, 4,659 m

A-7 A 171600Z to 181600Z 749 m, 4,353 m, 4,659 m

A-8 A 171600Z to 181600Z 749 m, 4,353 m, 4,659 m

A-9 C 171600Z to 181600Z 4,055 m, 5,521 m

A-10 C 171600Z to 181600Z 4,055 m, 5,521 m

A-11 C 171600Z to 181600Z 4,055 m, 5,521 m

A-12 A 191400Z to 201400Z 749 m, 4,046 m, 4,353 m, 4,659 m

A-13 A 191400Z to 201400Z 749 m, 4,046 m, 4,353 m, 4,659 m

A-14 A 191400Z to 201400Z 749 m, 4,046 m, 4,353 m, 4,659 m

A-15 A 191400Z to 201400Z 749 m, 4,046 m, 4,353 m, 4,659 m

A-16 A 191400Z to 201400Z 749 m, 4,046 m, 4,353 m, 4,659 m

A-17 A 191400Z to 201400Z 740 m, 4,046 m, 4,353 m, 4,659 m

A-18 C 191400Z to 201400Z 696 m, 5,521 m

A-19 C 191400Z to 201400Z 696 m, 5,521 m

A-20 C 191400Z to 201400Z 696 m, 5,521 m

A-21 D 191400Z to 201400Z 3,925 m, 4,225 m, 4,520 m, 4,612 m

A-22 D 191400Z to 201400Z 3,925 m, 4,225 m, 4,520 m, 4,612 m

A-23 D 191400Z to 201400Z 3,925 m, 4,225 m. 4,520 m, 4,612 m

A-24 D 191400Z to 201400Z 3,925 m, 4,225 m, 4,520 m, 4,612 m

A-25 D 191400Z to 201400Z 3,925 m, 4,225 m, 4,520 m, 4,612 m

A-26 D 191400Z to 201400Z 3,925 m, 4,225 m, 4,520 m, 4,612 m

UNCLASSIFIED

III. (C) PRESENTATION OF REDUCED DATA (U)

(C) Table A-1 summarizes the ambient-noise-intensity time-series plots presented in Figures A-6
through A-26. A 24-hour time-series plot for each of the six 1/3-octave bands, 12.5, 25, 50, 100,
160, and 250 Hz, at each depth is shown. The noise intensity is expressed in units of
dB/gPa/Hz'/2. For each time-series plot, a histogram of the noise intensity points was drawn along
the ordinate. In addition, a dashed line representing a 60-dB noise level is drawn parallel to each
abscissa to facilitate an analysis of depth dependence.
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APPENDIX B
(C) AMBIENT NOISE INTENSITIES AT ACODAC

SITES A, C, AND D (U)

(U) This appendix provides in some detail the analysis of a portion of the ambient noise data
recorded by ACODAC receivers located at sites A, C, and D. Two 24-hour periods were

investigated: day 171600Z to 181600Z and day 191400Z to 201400Z. Table B-1 summarizes the
data analyzed.

(U) The data processing, designed to TABLE B-I. (U) SUMMARY OF ACODAC

obtain the noise levels in selected 1/3-octave AMBIENT NOISE ANALYZED

filter bands, is described in Section I. The Site Day Depth (m)
main product of the processing (Section II)

was a set of 24-hour plots that show the A 171600Z to 181600Z 749, 4,046, 4,353

structure of the ambient noise intensity with A 191400Z to 201400Z 749, 4,046, 4,658Sdepth, frequency, and location as the c 171600z to 181600Z 696, 4,055

fundamental parameters. Although general c 191400Z to 201400Z 696, 4,055, 4,361

conclusions about the data can be made by D 191400Z to 201400Z 3,325, 3,625, 3,925
a cursory inspection of these 24-hour

records, a set of more quantitative state- UNCLASSIFIED

ments about the data is presented with the
analysis given in Sections III, IV, and V.

This appendix concludes with Section VI, which presents comments on these data and their
analyses.

I. (U) DATA PROCESSING SYSTEM DESCRIPTION

(U) The ARL/UT ambient noise measurement system (ANMS) is a hardware/software
configuration designed to perform 1/3-octave band analysis over the frequency range of 10 to
300 Hz. The primary source of data collection for the current analyses is the ACODAC receiving

array. The processing system is divided into three tasks: data conversion, calibration, and display.

A. (U) Data Conversion

(U) The first task performed by the analysis system is the conversion of time-series data to the

frequency domain using a real-time analyzer (RTA) as the front end to a digital computer
(Figure B-1). Figure B-2 shows the configuration and data paths of the CDC 3200 digital
computer system.

(U) The ACODAC analog tape is played back at a 20:1 time compression. The analysis is
performed on one data channel on each pass of the analog tape. The analog data are filtered (5
to 300 Hz), amplified, and input to the RTA, making use of the full dynamic range of the

analyzer. Simultaneously, the ACODAC time code, gain state, and overload information are input
to the digital computer (Figure B-l). The sample synchronization (900 Hz) for the RTA is
derived from the 50-Hz time code carrier by multiplication with a phase-lock frequency

multiplier. Synchronization of the RTA to the analog tape allows compensation for the speed
variations in tape recorder speed that can occur during recording, duplication, and playback. This
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Figure B-2. (U) CDC Computer System at ARL
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synchronization is also used by the RTA reset counter, which causes the real-time analyzer to
input a single frequency sweep each time its memory is filled. These sweeps cover contiguous
blocks of data. The RTA reset counter is, in turn, synchronized to the beginning of each
ACODAC minute by means of the PR position marker in the time code.

(U) With an effective sample rate of 900 Hz, the real-time analyzer will sweep from 0 to
300 Hz 12 times a second, each sweep covering 1-2/3 second of ACODAC data. During each
sweep, the linear-step spectrum output of the analyzer is digitized and stored in the CDC 3200
computer. The data are also being constantly monitored by a hardware calibration and overload
signal detector. Information regarding any such detections is also stored in the computer.

(U) To prevent distortion caused by ACODAC gain changes and amplifier switching transients,
those sweeps generated during the first and last 5 seconds of each ACODAC minute are
disregarded. The remaining 50 seconds of each minute are divided into five 10-second blocks. For
each of the six sweeps generated during a 10-second block, the 500 spectral lines output by the
real-time analyzer are floated, squared, and tested for distortion caused by a spectral output
exceeding the maximum input amplitude range of the A/D converter (RTA). If the input range is
exceeded, the process is aborted, and the operator is instructed to reduce the amplification of
the spectral outputs before restarting the process at the place where the distortion began. Once
this testing is completed, all six of the sweeps in each 10-second block are averaged, frequency-
line-by-frequency-line; 1/3-octave bands are then formed by summing over the appropriate
frequency lines. The data are then stored on digital tape in 10-second averages. The computer
constantly monitors the time code data to ensure that synchronization is maintained between the
data and the time code information.

B. (U) Calibration

(U) Each ACODAC data tape contains a header which consists of a sequence of externally
supplied calibration signals at known levels followed by a sequence of internally generated
calibration signals. The external calibration sequence consists of five frequencies (12.5, 25, 50,
100, and 200 Hz), each of which is supplied at four levels (-50, -40, -30, and -20 dB
re 1 Vrms). For the lowest level, -50 dB re 1 Vrms, the ACODAC amplifiers are in the highest of
their four gain states (40, 30, 20, and 10 dB), and stepped through the remaining states as the
external signal level was increased. These external calibration signals are used to measure overall
frequency response as a function of frequency and amplifier gain state.

(U) As the header signals are recorded before each ACODAC deployment, changes in the
frequency response could occur because of changes in the system's environment. The internal
calibration signals are used to supply this in situ correction. An internal calibration signal consists
of two frequencies (50 to 200 Hz), supplied in parallel at four different levels. Once again, the
amplifiers step through their gain states as the signal level is increased. An internal calibration
sequence is generated every 6 hours; thus, four such signals occur during each 24-hour analysis
period. The in situ correction is obtained by measuring the differences between the internal
calibration sequence in the header and those occurring during the analysis period. These
differences are corrected for the -0.27 dB change in the outputs of the calibration signal
generator as measured by Texas Instruments during environmental testing.

(U) The absolute levels of the external calibration signals, the measured frequency responses,
and the measured in situ corrections are then combined with the hydrophone sensitivities and a

UNCLASSIFIED B4 Equipment Group
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bandwidth correction that normalizes each band to 1 Hz. The result is a set of calibration factors
which are then applied to the data to yield noise intensities in dB/luPa/Hz/2.

C. (U) Display

(U) The calibrated 10-second averages are used to generate a histogram of noise intensity,
standard plots of noise intensity versus time, and a tabulated version of noise intensity versus time.

D. (U) Processing Error Analysis

(U) The error bands for the noise intensity estimates are ±0.3 dB. This limit includes the
effects of the playback recorder and the analysis system. The uncertainties in the ACODAC
system and the tape duplication process are not being included [reference ACODAC Processing
Error Budget Analysis, B-K Dynamics, Inc., TR-3186 (March 1974)].

(U) A cross check of the analysis system that includes the RTA was conducted during the analysis
phase. The reference is a broadband (5 to 300 Hz) digitization and FFT processing system. The
results from the reference system differ from the RTA system by approximately 0.1 dB.

II. (U) 24-HOUR RECORDS OF AMBIENT NOISE INTENSITY

(U) Figures B-3 through B-17 present 24-hour ambient noise levels, corresponding to various
1/3-octave frequency bands, obtained from the three ACODAC sites (A, C, and D). A
comparison can be made of the noise levels at different depths for a given frequency band, day,
and location. Thus, in Figure B-3, the ambient noise level in the 1/3-octave band centered about
12.6 Hz is shown for the hydrophone depths 749 m, 4,046 m, and 4,353 m. All noise intensities
are expressed in dB//iPa/Hz'A.

III. (C) VARIATION OF AMBIENT NOISE INTENSITY
WITH DEPTH (U)

(C) The ambient noise data, obtained at sites A and C, indicate (Figures B-1 8 through B-22)
that the noise intensity, for a given frequency, was about 4 or 5 dB greater near the sound
channel axis than it was at the critical depth. Furthermore, when the depth was increased to
approximately 300 m below the critical depth (Figure B-23, from CHURCH ANCHOR Synopsis
Report), an additional decrease of about 5 dB was observed in the ambient noise level.

(U) The variations of noise levels with frequency (as shown in Figures B-18 through B-22) are
based on approximations of the average intensity of the noise in a given frequency band over a
24-hour period. These approximations are based on observations of the noise intensity, disregard-
ing large variations caused, perhaps, by nearby shipping traffic. There is an error in the data of
Figure B-21, in that the noise levels at the depth of 4,361 in are about 12 dB lower than expected.

(C) Data from site D are shown in Figure B-22 where, in contrast to Figures B-i through B-4,
it is difficult to draw any firm conclusions about the change in noise intensity with depth. It is
interesting to note that all these depths shown in Figure B-22 are below the critical depth
(approximately 2,840 in). If a conclusion can be made, it is that the variation of noise intensity
with depth is not as great below the critical depth as it is when a transition is made from above
the critical depth to below the critical depth.
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Figure B-9. (C) Twenty-Four-Hour Noise Intensity Time Series at Site C, September 1973 (,U)
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Figure B-10. (C) Twenty-Four-Hour Noise Intensity Time Series at Site C (U)
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Figure B-II. (C) Twenty-Four-Hour Noise Intensity Time Series at Site C, September 1973 (U)
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Figure B-I 8. (C) Variation of Noise Intensity With Frequency (U)
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Figure B-i9. (C) Variation of Noise Intensity With Frequency (U)
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Figure B-20. (C) Variation of Noise Intensity With Frequency (U)
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Figure B-21. (C) Variation of Noise Intensity With Frequency (U)
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Figure B-22. (C) Variation of Noise Intensity With Frequency (U)
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TABLE- B-2. (C) APPROXIMATE NOISE INTENSITIES FOR TWO DAYS
AND TWO SITES (A AND C) (U)

Day (171600Z to 181600Z) Day (191400Z to 201400Z)
Frequency

(Hz) Site A Site C Site A Site C

25.1 82 85 82 83

50.1 82 85 80 83

100.0 75 78 75 77

125.1 71 74 70 75

191.5 61 66 63 70

CONFIDENTIAL

IV. (C) VARIATION OF THE AMBIENT NOISE INTENSITY
ALONG THE SOUND CHANNEL AXIS (U)

(C) Agiain referring to Figures B-1 8 through B-21, information on the noise intensity near the
sound channel axis for different days and different sites is available. For example, Table B-2
indicates the intensities for selected frequencies. These data indicate that the noise level near the
sound channel axis at site C is generally a few decibels greater than at site A.

V. (C) VARIATIONS OF THE AMBIENT NOISE INTENSITY
WITH FREQUENCY (U)

(C) It is easy to see that the noise levels plotted in Figures B-18 through B-22 can be divided
into two regions:

Region A: 10 Hz to 70 Hz. Here the ambient noise is relatively constant as the
frequency varies.

Region B: 70 Hz to 250 Hz. In this region, the noise intensity decreases rapidly
with increasing frequency. In Figure B-1 8, the decrease is about 12 to 15 dB
per octave and Figure B-19 it is about 10 dB per octave. Similar decreases are
seen in Figures B-20 and B-21. One other point of interest is that, below
critical depth, the decrease in noise intensity with increasing frequency is not
nearly so noticeable. This phenomenon is most clearly evident in Figure B-22,
which shows a decrease of about 4 dB per octave.

VI. (C) GENERAL OBSERVATIONS (U)

(C) One of the more significant features of the ambient noise data is the nonstationarity as
reflected in the rapid change in noise intensity that can occur over a period of only a few hours.
As the depth increases, the relative nonstationarity likewise increases, perhaps because of a
general decrease in the stationary component of the noise process. Nearby shipping traffic is
likely the source of these nonstationarities. Some of these fluctuations in the intensity patterns
have convergence zone characteristics, as can be seen in Figure B-16, for example.
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(C) There is a general decrease in the noise level with depth with the most rapid decrease

(considering the total change in depth) occurring as the transition across the critical depth is
made. In this case, the noise decrease is about 5 dB.

(C) There is some variation along the sound channel axis (Table B-2) although the variation is
much less than that observed with changes in depth.

(C) The data presented here indicate that there are no major changes in noise intensity level

from day (171600Z to 181600Z) to day (191400Z to 201400Z). This conclusion is reached by
comparing the intensities of these two days for the same hydrophones and sites (Figures B-18
through B-21). This applies, of course, only to the noise background, disregarding fluctuations

from nearby shipping.
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APPENDIX C

(C) OMNIDIRECTIONAL NOISE MEASUREMENTS FROM CFAV ENDEA VOUR (U)

I. (C) SYSTEM (U)

A. (C) MESA (U)

(C) During the CHURCH ANCHOR exercise, a single hydrophone of the MESA system was
used for omnidirectional noise measurements at two anchor stations, 57°N and 46'N, on the
prime exercise track, 143'30'W. The MESA system, shown in Figure C-i, was decoupled from
the wave motion and cable strumming by a two-stage suspension system. The entire system was
decoupled mechanically from the ship during a measurement period by paying out cables. During
a measurement period (quiet period), all the ship's machinery was turned off, and batteries
supplied power to the laboratory equipment.

B. (C) Processing System (U)

(C) The processing and analysis steps applied to the data are shown in Figure C-2. The ambient
noise signals from the array hydrophones were amplified and stored on analog magnetic tape.
The signals were then passed through an analog-to-digital converter (sample rate 2.5 kHz) and
processed using an HP 2100A computer with a hard-wired fast Fourier transform box (5470A)
into discrete 256-point spectra averaged over 1 minute. These spectra were recorded on digital
magnetic tape and then applied to an XDS Sigma 7 computer where they were calibrated, further
averaged, and processed into 1/3-octave bands.

II. (C) ERROR ANALYSIS (U)

A. (C) System Accuracy (U)

(C) The absolute system error was 0.7 dB. The hydrophones had an absolute calibration error
of ±0.5 dB over the frequency band of interest and were the largest single contributors to the
system error. The rest of the system made up the other ±0.2 dB of the absolute system error.

(C) Hydrophone self-noise levels fell off sharply with increasing frequency and were down at
least 18 dB from the ambient noise levels at 20 Hz.

B. (C) System Performance (U)

(C) The system performed well both electrically and acoustically; however, physical problems
encountered in handling the MESA system necessitated a change in the original measurement
schedule. Table C-1 shows the schedule of quiet periods achieved, as well as the ship's position
and the wind speed during each period.
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Figure C-1. (C) MESA System Configuration (U)
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TABLE C-1. (C) SCHEDULE OF QUIET PERIODS (U)

Quiet Hydrophone
Period Ship Depth Wind Speed

Number Position Time (meters) (knots)

1 57°10.0'N 0400Z 100 14
143°29.0'W 10 Sept. 73

2 57V13.5'N 2315Z 100 9
143' 14.0'W 10 Sept. 73

3 57'13.5'N 0210Z 100 6
143'14.0'W 1 1Sept. 73

4 57 12.5'N 0445Z 100 10
143'14.0'W 11 Sept. 73

5 57°12.8'N 0800Z 100 13
143' 13.0'W 11 Sept. 73

6 57 12.0'N 1145Z 100 13
143' 13.0'W 11 Sept. 73

7 57* 11.6'N 1950Z 100 11
143'14.9'W 11 Sept. 73

8 45'57.6'N 0810Z 460 14
143°43.4'W 19 Sept. 73

9 45'48.8'N 0230Z 460 27
143°27.0'W 20 Sept. 73

10 45 0 59.0'N 0515Z 400 4
143°25.0'W 21 Sept. 73

11 45'59.3'N 0915Z 400 11
143'26.0'W 21 Sept. 73

12 45'59.0'N 1540Z 400 15
143°28.0'W 21 Sept. 73

14 45' 57.8'N 0410Z 400 11
143029.1'W 22 Sept. 73

16 46°2.3'N 2310Z 400 25
143*27.1'W 22 Sept. 73

NOTE: (1) The time for each quiet period is rounded off to the first even fifth
minute in each period.

(2) For quiet periods 3, 6, 8, 9, 10, 11, and 12, thirty minutes of noise
data was available.
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Figure C-3. (C) Ambient Sound Pressure Levels Averaged Over 15 Minutes

In Five 1/3-Octave Bands Versus Time (Southern Station, 460N, 143°30'W) (U)

III. (C) PRESENTATION OF REDUCED DATA (U)

A. (C) Ambient Sound Pressure Levels in 1/3-Octave Bands
Versus Time (U)

(C) Plots of ambient sound pressure levels in the five 1/3-octave bands (25, 50, 100, 160, and
250 Hz) versus time for the southern (46°N) and northern (57°N) stations are shown in
Figures C-3 and C-4, respectively.

(C) At the southern station, the levels measured in the 160- and 250-Hz bands had a direct
dependence on wind speed. The increase in level that occurred at 1545Z September 21 was
because of a nearby broadband source; however, no ship was evident in the area.
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Figure C4. (C) Ambient Sound Pressure Levels Averaged Over 15 Minutes
In Five 1/3-Octave Bands Versus Time (Northern Station, 57*N, 143 0 30'W) (U)

(C) At the northern station, correlation between wind speed and noise levels was very weak,
even in the 160- and 250-Hz bands. The increase in noise level in the 100-Hz band that occurred
at 0800Z September 11 was caused by a passing ship.

B. (C) Narrowband Spectra (U)

(C) Plots of the spectra measured at the southern station and the northern station are shown
in Figures C-5 and C-6, respectively.

(C) The increase in levels observed during quiet periods 12 and 5 was caused, respectively, by
the presence of the broadband source and the presence of the passing ship mentioned earlier.
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Figure C-5. (C) Representation of Ambient Noise Spectra for
Quiet Periods 1-16 Excluding 13 and 15 (Southern Station) (U)

CONFIDENTIAL C-7 Equipment Group



CONFIDENTIAL

QUIET PERIOD No. 1 0400 Z 10 SEPT. 1973
2 2315 Z 10 ,

3 0210 Z 11 ,
4 0445 Z 11 ,
5 0800 Z 11 ,
6 1145 Z 11 ,,
7 1950 Z 11 ,,

ANALYSIS BANDWIDTH=4.883 HZ

AVERAGING TIME-15 MIN

80-

N

-- 80--

v 80- 1

d; 2"~ 80--

A~ll-j 80- 3

w -- 80-

80- 5
LU

a 70- 6
z
0
"Ln 60- 7

I I I I I 1 I I jf
101 2 3 4 5 6 7 8 9 102 2 3 4 5 6 789 103

FREQUENCY IN HZ

197810
CONFI DENTIAL

Figure C-6. (C) Representation of Ambient Noise Spectra for Quiet Periods 1-7 (Northern Station) (U)
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(C) The line at 38 Hz that occurred during quiet period 16 was caused by the acoustic source
towed by the M/V Mediterranean Seal. A very strong line at 440 Hz was present throughout the
entire measurement period at the northern station.

IV. (C) ANALYSIS OF RESULTS (U)

A. (C) Variation of Noise Levels With Local Wind Speed (U)

(C) Plots of the ambient noise levels for the five 1/3-octave bands (25, 50, 100, 160, and
250 Hz) versus wind speed are shown in Figures C-7 and C-8.

(C) Noise levels measured in the lower frequency bands (25, 50, and 100 Hz) for both stations
were attributed to noise generated by shipping, as there did not appear to be any dependence of
the noise levels on wind speed.

(C) The noise levels measured in the higher frequency bands (160 and 250 Hz) were attributed
to a combination of shipping and sea surface agitation (wind speed) at the southern station and
to only shipping at the northern station. The noise levels appeared to have a direct dependence
on wind -speed at the southern station but did not fall off as sharply as one would expect for
low wind speeds if sea surface agitation were the only mechanism contributing to the noise.
Therefore, the noise levels measured were considered to be the result of shipping when the wind
speed was low and a result of a combination of shipping and sea surface agitation when the wind
speed was high. At the northern station, there did not appear to be any dependence of the noise
levels on wind speed. Also, the noise levels were 3 to 4 dB higher than those measured at the
southern station for equal wind speeds. Therefore, the dominant source of noise at the northern
station was considered to be shipping.

B. (C) Comparison of Spectra Measured at Southern and
Northern Stations (U)

(C) A plot comparing the spectrum recorded at the northern station with the spectrum
recorded at the southern station for low wind speed conditions is shown in Figures C-9. This plot
indicates the extent to which shipping noise influenced the ambient noise spectra at the two
stations.

(C) The noise spectra attributed to shipping were of a different character at the two stations.
The noise levels in the frequency range 30 to 70 Hz were 2 to 3 dB higher at the southern
station than those at the northern station. However, above 90 Hz, the noise levels at the
northern station were 3 to 4 dB higher than those at the southern station.

V. (C) SUMMARY (U)

(C) During the CHURCH ANCHOR exercise, the MESA system was used for omnidirectional
noise measurements at two stations, 57°N and 46 0 N, on the exercise baseline 143'30'W.

(C) Noise levels measured in the 25-, 50-, and 100-Hz 1/3-octave bands were attributed to
shipping. In the 160- and 250-Hz 1/3-octave bands, the noise levels were attributed to a
combination of shipping and sea surface agitation (wind speed) at the southern station and to
only shipping at the northern station.
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Figure C-7. (C) Plots of Ambient Sound Pressure Levels Measured
in the 1/3-Octave Bands Shown Versus Wind Speed (U)
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Figure C-8. (C) Plots of Ambient Sound Pressure Levels Measured
in the 1 /3-Octave Bands Shown Versus Wind Speed (U)
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Figure C-9. (C) Plot Comparing the Spectrum Recorded at the Northern Station (57 0N) With the
Spectrum Recorded at the Southern Station (460N) for Low Wind Speed Conditions (U)

(C) The noise spectra attributed to shipping were of different character at the two stations.
The levels were higher in the frequency range (30- to 70 Hz) at the southern station and higher
in the frequency range (above 90 Hz) at the northern station.
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APPENDIX D

(C) AMBIENT NOISE MEASUREMENTS FROM R/P FLIP
DURING THE CHURCH ANCHOR EXERCISE (U)

(U) This appendix represents an analysis by the Marine Physical Laboratory in the northeastern
Pacific Ocean of ambient noise measurements made aboard the R/P Flip. These data were
collected in September 1973 during the CHURCH ANCHOR exercise.' Some of the data
obtained were presented and discussed previously in a synopsis2 based on these data and on data
gathered by other participants who were involved in the CHURCH ANCHOR exercise.

(U) The hydrophone system used in obtaining these data was deployed from the R/P Flip in
two different configurations. During the first phase of the exercise, 20 hydrophones were
deployed as a uniformly spaced, 20-element vertical array with a total aperture of 532 meters.
Depth-dependence studies were made by sequentially positioning the array at six depths of chief
interest distributed from near the sea floor to the sound channel axis as shown in Figure D-1.
During the second phase, the hydrophones were deployed in five widely-spaced depth groups, as
shown in Figure D-2, to allow simultaneous or near simultaneous sampling of the ambient noise
throughout the water column.

I. (U) DATA PROCESSING SYSTEM

(U) Figure D-3 is a generalized block diagram of the acoustic data acquisition system, as used
aboard R/P Flip. Each hydrophone module consists of a cage or support frame, the hydrophone,
and the electronics package. The cage supports the hydrophone by an eight-point compliant
suspension system to decouple cable motions from the lead zirconate pressure sensor. The
individual hydrophone outputs are FM-multiplexed and telemetered to the onboard electronics
where the signals are separated, demodulated, and made available to the processing units. The
omnidirectional ambient noise data were low-pass-filtered, amplified, and processed by the PDP
11/20 computer system.

(U) Ambient noise information from four hydrophones was digitized simultaneously and fast
Fourier transform (FFT) methods were used for performing on-line spectral analyses. Each of the
four hydrophone outputs was sampled at a rate of 2.273 kHz over about 0.9 second to obtain
2,048 points for the FFT processor. The output was spectra with a 1.1-Hz constant-bandwidth
resolution. Accumulations of 128 such individual spectra were averaged for each of the four
sensors to obtain the final estimated noise spectrum levels, which were stored in digital format
on DEC tape. The processing duty rate was about 67 percent; that is, it required about 3 minutes
to sample, process, accumulate, and store the 2 minutes of data.

(U) Postexercise processing consisted of first reading the on-line processed digital data tape,
entering individual hydrophone or channel calibration constants, and finally averaging the
calibrated on-line spectral information from the appropriate 1.1-Hz bands to form one-third
octave levels centered at 25, 50, 100, 150, and 250 Hz. These one-third octave levels, in decibels,
were plotted versus time, or listed for subsequent plotting.
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PHASE I ARRAY POSITIONS RELATIVE TO THE VELOCITY PROFILE
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Figure D-1. (U) Phase I Array Positions Relative to the Velocity Profile

II. (U) ERROR ANALYSIS

(U) The accuracy of the ambient noise values derived from data taken aboard R/P Flip have
been treated elsewhere.3 Nonetheless, they are treated here, in summary, for completeness.

(U) The errors associated with the noise measurements have been divided into two categories:
random errors to account for those that may change during the data-taking time interval and
fixed bias errors to account for those that remain fixed in time for the system. In general, the
random errors are believed to be small, amounting to a range of ±0.3 dB to +0.5 dB, and perhaps
even less, as the noise data are subject to both ensemble averaging over the 128 accumulations
and frequency averaging to form the one-third octave values. The fixed-bias errors are attributed
largely to the precision of the hydrophone sensitivity calibrations (±0.5 dB) and to differences
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between the pre-exercise and postexercise telemetry gain calibrations that varied over a maximum
range of ±0.8 dB, with the majority occuring in the range of ±0.4 dB. Using the maximum errors
associated with the telemetry, the total bias error for the acoustic noise data is estimated to be
±1.0 dB.

(U) Actual ambient noise data taken during the exercise at a depth intermediate between the
axis and the bottom of the sound channel, a depth at which minimum depth dependence of
noise is expected, have been examined for hydrophone-to-hydrophone differences. At 100 Hz,
the 20 hydrophones yield a value of 0.8 dB for the standard deviation of the sound pressure
level as determined from the levels measured at the individual sensors. While it is possible that
part of the scatter in the values may indeed be true variations in the noise level over the
532-meter array, we can nevertheless interpret this ±0.8 dB as a maximum value for the relative
differences between hydrophones. This value for scatter, as it is influenced by both the random
and the bias error, is consistent with the analytical error analysis.

(U) Examination of the ambient noise spectra shows that there are discrete spectral lines
associated with noise radiated from R/P Flip which have necessitated some adjustments or
deletions of selected one-third octave analysis bands. The spectra for the hydrophone at
200 meters show a line near 23 Hz, thus contaminating the data for the one-third octave band
centered at 25 Hz. These data have been deleted from the analysis. Spectra for all hydrophones,
regardless of depth, exhibit a spectral line at about 174 Hz which is believed to be caused by an
on-board salt-water pump and engine cooling system. One-third octave data at 150 Hz are
therefore presented in lieu of data at 158.5 Hz which would have been contaminated by this
particular 174-Hz line. For intersystem comparisons, it should be noted that the spectrum levels
at 150 Hz will be slightly higher than the spectrum levels at 158.5 Hz as reported by others. For
hydrophones within the sound channel, the spectral slope in this particular frequency region is
typically -10-dB/octave, resulting in the 150-Hz levels being 0.8 dB higher than those at
158.5 Hz. For hydrophones below the sound channel, the slope is near -6-dB/octave, resulting in
the 150-Hz levels being 0.5 dB too high.

III. (C) AMBIENT NOISE DATA (U)

(C) During the first phase of the array deployment three 24-hour periods were assigned for
ambient noise. The depth-dependence studies were made by sequentially positioning the array at
different depths and measuring ambient noise. Two depth cycles were taken during each 24-hour
period with the exception of the first day, 2 September 1400Z to 3 September 1400Z, when
only a partial cycle was completed. As all three days exhibit the same general effects, only data
from the noise days 5 September 2000Z to 6 September 2000Z and 8 September 2200Z to
9 September 2200Z are presented and discussed.

(C) Figure D-4 shows the ship traffic as observed by radar from FLIP during the 5-6
September noise day. The array depth positions are numbered from one to six, with six being
the deepest position. Note that there is a slight preference for ships to be nearby when the array
was deep. The noise levels for selected one-third octave bands are given in Figure D-5. The radar
observed ship traffic for 9 September is given by Figure D-6. For this day, although the traffic is
less, there is a definite correlation between ship traffic and array depth; ships were nearby when
the array was deep. The noise samples which were scheduled to start in 2200Z on 8 September
were delayed about 3 hours to allow the noise from a passing freighter to subside. Figure D-7
gives the noise levels for the five one-third octave bands.
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Figure D-4. (C) Local Ship Traffic Near Flip During 5-6 September 1973 Noise Period (U)
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Figure D-6. (C) Local Ship Traffic Near Flip During 8-9 September 1973 Noise Period (U)
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Figure D-8. (C) Ambient Noise Spectrum Levels for Five One-Third Octave Bands
During 17-18 September 1973 as a Function of Time and Depth (U)
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(C) All of the noise data taken during this first phase of the exercise suffer from the fact that
spatial changes in the noise levels ascribed to depth cannot be separated from the temporal
changes in the noise levels that resulted during the time required to change the depth of the
array. This situation was particularly difficult for the noise days considered here, as shipping
traffic was relatively high.

(C) During the second phase of the exercise, the hydrophones were deployed in five widely
spaced depth groups to investigate, in particular, the depth dependence and the temporal
variability of the omnidirectional ambient noise intensity. For two periods, each of about
24 hours, noise samples were taken approximately one time each hour.

(C) The ambient noise levels taken during the 17-18 September noise period for the five
one-third octave bands are shown as a function of time for eight hydrophone depths in
Figure D-8. The two prominent features of these data are the decrease in noise levels by as much
as 10 to 15 dB with increasing depth for all the frequencies from 25 Hz to 250 Hz and the large
changes in level with time. Perhaps the most prominent temporal change in level occurs between
1700Z and 210OZ 17 September with the passage of a Norwegian freighter, the Jacara. This ship
approached within 0.9 nautical mile of R/P FKip at 1842Z. The effect of this ship on noise level
varied with frequency and hydrophone depth but the total change in level was not only greater
for the deeper hydrophones than for the shallow hydrophones but also persisted for a longer
time period. Thus, the effect of a local ship, that is, one passing near the receiver, was far more
prominent on the deeper hydrophones than on the shallow ones. Another major temporal change
occurs between OOOOZ and 1200Z on 18 September. Although no radar contacts were noted
during this period, it is easily possible for ships to pass at a distance close enough to increase the
noise level substantially yet be beyond radar contact range. It should be noted that this broad
increase in level could have been caused by the passing of two ships, one with a closest point of
approach occurring at about 0300Z and the other at 0700Z.

(C) The ambient noise data for the 19-20 September period are shown in Figure D-9. As in
the previous noise period, the data exhibit both a substantial decrease in noise level with depth
and a large variability in level with time. Radar contact with only one ship was made during this
period. An unidentified ship traveling at 15 knots passed within 6 nautical miles of R/P Flip at
0605Z 20 September. Two additional apparent ship passings are also suggested by the acoustic
data, one occurring during the early part of the noise sampling period at 1800Z or earlier on
19 September and the other near the end at about 1400Z 20 September. As in the previous noise
period, the effects of nearby ships on the noise levels varied, depending upon the hydrophone
depth, the frequency, and the ship-to-receiver range. In general, however, the deeper
hydrophones exhibit a greater effect of passing ships mainly because the hydrophones themselves
are in a quieter environment. This is clearly demonstrated by the 50-Hz data during the ship
passage. All the hydrophones, regardless of depth, measure almost the same noise level at 0600Z.

IV. (C) ANALYSIS OF RESULTS (U)

(C) The temporal variations in the ambient noise levels observed during the last two noise
periods are highly variable, with the changes being as great as 30 dB. These major changes are
caused by ships passing within a few miles of the hydrophones, as confirmed by radar contacts.
In addition, these temporal variations exhibit a depth dependency, with the hydrophones that
are within 150 meters to 200 meters of the bottom having the most frequent and greatest
changes in levels.
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Figure D-9. (C) Ambient Noise Spectrum Levels for Five One-Third Octave Bands
During 19-20 September 1973 as a Function of Time and Depth (U)
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(C) The basic problem in ascertaining the noise versus depth relationship in how to handle this
local shipping effect. Does one assume that the high noise levels from nearby ships are indeed
part of the ambient noise field and include them in the analysis or should an attempt be made
to eliminate their effects? The author believes that these effects should be eliminated from the
noise versus depth analysis for the following reasons:

These local ship effects are very dependent upon local conditions and the data
collection period. The measured noise levels could change significantly if the
receiver was moved a short distance away from the major shipping traffic or if
the data were taken over a slightly different time period.

Usually, in data analyses, simple or arithmetic averaging is used to determine a most
likely value. Where distributions are normal, such averaging does tend to yield
a most-likely-to-occur value. For distributions other than normal, particularly
those that are single-sided, this is not the case. The effect of passing ships is
to superimpose a high noise level on what may be regarded as a "baseline"
ambient noise level. The result is, in general, a nonnormal distribution of noise
level.

(C) Eliminating this local ship effect from the ambient noise becomes a problem of
establishing this baseline or minimum noise level. For these data, this was accomplished by
visually determining an "average minimum" baseline for the ambient noise for each frequency
and for each hydrophone depth. The results of these determinations are shown in Figure D-1 0.
These baseline ambient noise levels appear to be divided into two distinct depth groups on the
basis of the noise gradient, that is the change in noise level with depth. One region is from the
surface to near the bottom of the sound channel, and the other is in the region below the sound
channel to the sea bottom. The boundary between the two regions appears to occur near
4,300 m, which is slightly above the 4,430-m critical depth as determined from sound velocity
measurements. Table D-1 gives the vertical gradients for the ambient noise in the two regions.
The gradients in the upper region show a consistent change with frequency. There are also
differences in the gradients for the deeper region; however, those gradients are measured over a
small depth interval where there is more scatter in the noise levels. The differences in the deep
gradient may not be significant. The important point, however, is that the decrease in ambient
noise with depth is five to ten times greater below the sound channel than it is within the
channel itself.

TABLE D-1. (C) VERTICAL GRADIENTS OF BASELINE AMBIENT NOISE
SPECTRUM LEVELS IN DECIBELS PER 1,000 METERS (U)

Frequency
25 Hz 50 Hz 100 Hz 150 Hz 250 Hz

Surface to 4,300 m -1.5 -1.2 -1.0 -0.6 0

4,300 m to sea bottom -8 -8 -11 -9 -8

CONFIDENTIAL

(C) Figure D-11 shows the spectrum levels for seven of the eight hydrophones. For
comparison, the idealized ambient noise spectra for deep water for different shipping densities, as
reported by Swanson,4 are given. The curve of average near shipping lanes compares favorably
with the noise measurements made at shallow depths, whereas the deep hydrophone data agree
with the idealized "quiet" curve.
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APPENDIX E

(U) SOURCE OF 20-HZ PULSES

A distinctive noise source was observed in the data from sites A and C. These signals were
of a repetitive nature and occurred near 20 Hz. Figure E-1 shows examples of these 20-Hz signals
from the data at site C both as they appear on a lofargram and on a time plot of the waveform.
As can be observed from this figure, these signals are relatively narrowband (10 to 15 Hz wide)
and are repetitive in nature. The average period measured was 42.6 seconds and the pulses were
paired. A first large-amplitude pair occurred, followed by a smaller pair about 23.4 seconds later.
Each pulse duration was about 1 second. Although the source levels are not known, it appears
that they are quite high since they are stronger than most of the lines generated by local
shipping. The paired pulses that occurred about 2.7 seconds after each of the large and small
pulses on the 4,055 m hydrophone and about 3.2 seconds on the 5,521 m hydrophone are
believed to be surface reflections. Figure E-2 indicates the probable propagation path involved
and would indicate that the source of the pulses is submerged. A surface reflection is indicated
(unless a more complicated propagation path is theorized) rather than a bottom bounce, since
the time difference of arrival between the main pulse and the reflected pulse is less for the
shallow phone than for the deeper phone.

The 20-Hz pulses are believed to be of biological origin, probably the finback whale, species
Balaenoptera Physalus, that may have been in the vicinity during the CHURCH ANCHOR tests.
The major reasons for this conclusion are:

Finback whales are known to frequent this part of the ocean. They move generally at
a rate of 1 to 4 knots, and sometimes as high as 8 knots. Their density is low,
usually one to several hundred square miles, although several may be observed
together.

The frequency, pulse period, pulse duration, and fading cycle characteristics all agree
with data derived from known finback whale pulse signals. Several different
sequences of pulses have been observed in the past. In one sequence, the pulses
were constant-amplitude pulses and were repeated at approximately 12-second
intervals. In a second observed sequence, the pulse interv-hi ranged from 21 to
32 seconds. In yet a third sequence, the period was about 37 to 40 seconds,
except that the pulses were paired. A first large-amplitude pulse occurred,
followed about 22 seconds later by a smaller pulse. This last sequence, of course,
closely resembles the pattern observed in the data from sites A and C.

The pulses do not appear to correlate with the track of any ship although it is believed
that the whales may be stimulated to emit pulses by the presence of ships and by
changes in the speed of a ship's engine. In addition, the presence of ships may
also cause the whales to cease emission.

Figure E-3 shows the times and levels of 20-Hz pulses observed on the 4,659 m and
5,521 m phones from sites A and C, respectively. Lower level activity was observed at site D. As
can be seen from Figure E-3, 20-Hz pulse trains were observed for periods of 24 hours or longer,
except for short fading periods of an hour or so. In some of these periods, the pulses would fade
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Figure E-1. (U) Example of 20-Hz Pulses at Site C
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Figure E-2. (U) Probable Propagation Paths for 20-Hz Pulses at Site C
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Figure E-3. (U) Occurrence of 20-Hz Pulses

out gradually while in others the pulses would stop abruptly. From analysis of the data, the
pulses did not correlate or originate from any shipping in the data and appeared to originate at
some depth. No attempt was made to estimate source range or depth.
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APPENDIX F

(U) SHIP SIGNATURES

A summary of typical ship signatures identified from the lofargrams is discussed in the
following section.

I. R/VNORTHSEAL

The primary mission of the R/V North Seal was to deploy, recycle, and retrieve three
ACODACs in the exercise area. From the track charts, the ship was near site C between
September 14 and 16, and site D around September 18. Significant evidence of the ship was
observed in the lofargrams in the 10-day ACODAC plots during these time periods at these two
sites.

Figure F-1 shows lofargrams of the R/V North Seal signature and the effects of multipath
interference as it passed near site C at about 161400Z September. Note the blade lines which
appear with a fundamental spacing of about 8 Hz. With four blades per screw, this gives a shaft
speed of 120 rpm. Some shaft lines can be observed; but, with two shafts apparently turning at
slightly different speeds, combined with some evidence of cavitation; a clean blade and shaft
pattern is somewhat obscured.

Strong multipath interference effects were observed on most of the sensors with a closest
point of approach occurring about 161400Z. The mirror frequency (spacing between lines in the
interference pattern) decreased for the shallower depth phones. This is as it should be for
radiated noise from a surface ship arriving by direct and bottom-bounce paths.

As can be observed from the lofargrams and the 10-day time-series plots shown later in this
section, the effect of the R/V North Seal on ambient noise levels was more severe (by as much
as 10 to 15 dB) at depths below the sound channel axis. Although the time periods during which
the ambient level was significantly increased in one or more of the 1/3-octave bands were limited
to a few hours (2 to 6 hours in most cases), relatively strong discrete lines were observed for
much longer periods of time on lofargram.

II. M/V MEDITERRANEAN SEAL

The primary mission of the M/V Mediterranean Seal was the deployment of two
hydro-acoustic sources at various depths, frequencies, and power levels. A secondary mission was
collection of environmental data including XBT profiles and meteorologic data. From the track
charts, the M/V Mediterranean Seal passed near site C between September 20 and 21. During this
time, its radiated noise energy dominated several 1/3-octave bands and also produced strong
multipath interference effects.

Figure F-2 shows the lofargrams of the signature of the M/V Mediterranean Seal at several
phone depths as it passed through the first convergence zone. According to computer range
readouts, the M/V Mediterranean Seal was approximately 30 miles from site C at this time. As
can be seen from the lofargrams, the signature peaks at about 201200Z and falls off in strength
on either side and is quite characteristic of. convergence zone reception. Strong blade lines with a
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fundamental spacing of about 9 Hz are observed with slight evidence of three shaft lines between
each blade line, which indicates a four-bladed prop. Some evidence of cavitation is noted by the
diffusion of the blade lines. The effect of depth is quite apparent on these lofargrams, with the
signature effects being much stronger for the deeper phones.

III. USNS SILAS BENT

The primary mission of the USNS Silas Bent included implantment and recovery of moored
current meter arrays, deployment of SUS charges, and collection of general environmental
information. From the track charts, the USNS Silas Bent passed fairly near all three sites
between the 22nd and 26th of September. Evidence of significant changes in the ambient noise
was observed at each of the sites (A, C, and D) when the ship was near each site.

IV. UNKNOWN SHIPPING

A relatively large number of ships of unidentified source are observed on the lofargrams
and, to a lesser extent, on the 10-day time-series plots. In many instances, the signatures of
unknown ships were observed on the lofargrams but did not pass near enough to a site to
appreciably affect the noise levels in the 1/3-octave bands. Also, at times, signatures from more
than one ship were observed on the lofargrams.
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